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=> Important to have accurate vertical mixing in the model;

=> Accurate 4-D (x, y, z, t) CO2 fields.

Stephens et al., 2007, (Science)
 Numbers and characters are different
transport models.
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Meteorology fields & CO2
Atmosphere

CO2

Winds

Height

 Offline transport models have been used.

 The initialization meteorology fields are from either reanalysis
products (usually 6-hourly) or off-line dynamical model;

 The vertical mixing has large uncertainty;

 Single realization of meteorological field.
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 Generate 6-hourly 3-D (x, y, z) CO2 fields by assimilating
CO2 and meteorological observations with full GCM

Research Goals
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Carbon-Climate Model
Community Atmospheric Model

(fvCAM 3.5) (2.5x1.9x26)

CO2, winds, q, T, Ps

Photosynthesis

Respiration

LandOcean

Fossil fuel
emission

Ocean CO2 flux
(Takahashi et al. 2002)

 CO2 is transported as a tracer;
 Vertical mixing is updated every 30 minutes;
 Land carbon flux: 6-hourly flux from biogeochemical model.
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Ensemble Kalman Filter (EnKF) process

 Forecast error changes with time;

 Obtain ensemble analyses.

t=0hr t=06hr t=12hr

Ensemble
forecasts

Ensemble
analyses

(initial states)

Observations
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CO2 Observation Operator
• Model forecast xb is CO2 vertical profile;

• AIRS CO2 is column-weighted Volume Mixing Ratio (vmr);

=> observation operator: interpolate xb to obs location & calculate
model forecast column-weighted CO2 vmr.
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Assimilation experiments

 Met-run: assimilate raw meteorological observations (106

observations)

 AIRS-run: assimilate AIRS CO2 observations in conjunction
with meteorological observations.
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The impact of AIRS CO2 assimilation
on 6-hourly CO2 3D (x, y, z) fields
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AIRS-run

 AIRS-run: AIRS CO2+met obs; Met-run: only met obs.

 The year of 2003.

 Prescribed surface CO2 flux forcing.
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 Averaging kernel: the sensitivity of AIRS CO2 to CO2
at each vertical level.

AIRS CO2 at 18Z01May2003 (+/-3hour)	
�
AIRS averaging kernel

o: polar region; +:
mid-latitude; closed
circles: the tropics.

More than 2000 AIRS CO2 within 6 hours;
more sensitive in the middle troposphere

ppm
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Analysis corrections to CO2 forecast peak at the
similar levels as the peak of the averaging kernels

 No CO2 observations beyond 60ºS.

Time-averaged (10 months)
absolute analysis corrections Averaging Kernel
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May 2003: CO2(850hPa)-CO2(400hPa)
Met-run

Assimilating CO2 adjusts CO2 vertical
gradient

 In the NH, CO2(850hPa)>CO2(400hPa): fossil fuel+ land carbon
source;

 In the SH, CO2(850hPa)<CO2(400hPa): transported from the NH.
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May 2003: CO2(850hPa)-CO2(400hPa)
Met-run

Assimilating CO2 adjusts CO2 vertical
gradient

 In the NH, CO2(850hPa)>CO2(400hPa): fossil fuel+ land carbon
source;

 In the SH, CO2(850hPa)<CO2(400hPa): transported from the NH.

(AIRS-run)-(met-run)

 Require CO2 obs in the lower troposphere to further constrain
gradient.
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Inconsistent spatial distribution between
AIRS CO2 and ocean-air CO2 flux

Ocean-atmosphere CO2 flux (unit: 10-9kgC/m2/s Takahashi et al., 2002)

Annual mean AIRS CO2 spatial anomaly (ppm)
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Tropical AIRS CO2 relates to circulation
and averaging kernel

Ocean-atmosphere CO2 flux (unit: 10-9kgC/m2/s Takahashi et al., 2002)

Annual mean AIRS CO2 spatial anomaly (ppm)
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Annual mean CO2 correction from assimilating AIRS CO2

Assimilating AIRS CO2 improves spatial
pattern

Annual mean AIRS CO2 spatial anomaly (ppm)

CO2 spatial anomaly at AIRS CO2 space from met-run
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Consistent CO2 distribution and weather
pattern

Single time (12Z27Feb2003) Time average over Feb 2003

ppm

500hPa geopotential height (contour) and CO2 from AIRS-run (shaded)

 Simultaneous assimilation of meteorology variables and CO2
generates CO2 distribution consistent with weather pattern
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CO2 analysis spread ranges from
0.4ppm to 2ppm at 400hPa

400hPa monthly mean
(September) CO2 spread

 Analysis ensemble spread is related to observation coverage,
forecast error and observation error;

 Larger spread over high latitudes, and over land;

 Smaller spread over tropical ocean is due to observation coverage
and propagation through forecast.

ppm

Average num of CO2 observations at
each grid box within 6 hours
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Column-integrated CO2—Sep
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Column-integrated CO2—Oct
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Column-integrated CO2—Nov
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AIRS
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20 days with no AIRS
CO2
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Assimilating AIRS CO2 improves surface
CO2 seasonal cycle and the N-S gradient

Surface obs: black; Met-run: red: AIRS-run: blue

Mean NH CO2 concentration at 8
surface stations

The N-S gradient based on 16
surface stations

Surface data is from
NOAA/ESRL websiteMet-run has similar NH CO2

concentration and the N-S gradient
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Assimilating AIRS CO2 improves CO2
state estimate

 CO2 from the AIRS-run can be about 1 ppm more accurate than
those from the met-run.
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Preliminary results on surface
carbon flux estimation by

assimilating AIRS CO2
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The impact of AIRS CO2 assimilation
on surface CO2 flux
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LETKF: Local Ensemble Transform Kalman Filter (Hunt et al., 2007)

• The carbon flux analysis acts as boundary forcing for the forecast
of next time step.

• Four and a half months assimilation cycles (01Jan2003-10May2003).

6 hour forecast
(u, v, T, q, Ps)
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Carbon Flux Analysis:Data Assim (left)
Carbon Flux (CASA (land)+Takahashi (ocean))(right)

January 2003

• AIRS has the most impact over the tropical land

• Stronger source in the NH winter

• Stronger sink in the tropics and SH subtropics

• Noisy over ocean compared to Takahashi

10-8 kg/m2/s
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Carbon Flux Analysis:Data Assim (left)
Carbon Flux (CASA (land)+Takahashi (ocean))(right)

February 2003

• Stronger source in the NH winter

• Stronger sink in the tropics and SH subtropics

• Noisy over ocean compared to Takahashi

10-8 kg/m2/s
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Carbon Flux Analysis:Data Assim (left)
Carbon Flux (CASA (land)+Takahashi (ocean))(right)

March 2003

• Little change
10-8 kg/m2/s
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April 2003

• Little change

Carbon Flux Analysis:Data Assim (left)
Carbon Flux (CASA (land)+Takahashi (ocean))(right)

10-8 kg/m2/s
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May 2003

• As in the OSSEs, the surface fluxes appear initially
to be reasonable and then they “get stuck”.

Carbon Flux Analysis:Data Assim (left)
Carbon Flux (CASA (land)+Takahashi (ocean))(right)

10-8 kg/m2/s
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Monthly average AIRS CO2 does not change
much over the tropical land from January to May

Jan

Feb

Mar

April
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Conclusions - General

• EnKF brings important advantages for Reanalysis:

 Analysis uncertainty

 Adaptation to new observing systems

 Estimation of obs. errors and identification of bad
observations (not shown)

 Estimation of model bias (essential)

• For Carbon Reanalysis it is essential to assimilate at the
same time meteorological and carbon observations
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Conclusions - Simulations (OSSEs)

• The advantage of the OSSEs is that we know the true
fluxes and CO2

• It is possible to estimate surface carbon fluxes from
atmospheric CO2 measurements but

 Need “variable localization” to reduce sampling
errors

 Need adaptive inflation of the B error covariance

 Need to estimate model bias

• Problem: the initial results after spinup from random
fields are good, but then the surface fluxes “don’t want to
change anymore”.

 This is probably due to model bias
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Conclusions - AIRS data assimilation

• AIRS CO2 data assimilation is clearly successful!

 Improved atmospheric CO2 and N-S gradient

 Better agreement with independent observations

 Insight about vertical circulation and mixing

• Preliminary estimations of carbon fluxes are very
promising after one month spin-up:

 Compared with CASA fluxes they yield reasonable
uptakes in the SH summer and stronger emissions
in the NH winter

 But, like in the OSSEs, the fluxes “don’t want to
change” with season
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Conclusions - AIRS/IASI GoSAT/OCO2

• The combination of satellite and in situ data is important:

 Results are more accurate in NH than in SH

• We need more near surface information

 Carbon fluxes can be derived from atmospheric CO2

• Results depend on optimal forecast spread, a difficult
problem for surface fluxes:

 Work on estimating model bias

 Should find why after initial good surface fluxes they
“don’t want to change” with season

 We probably need to estimate diurnal and seasonal
changes with a different approach (e.g., EOFs).


